Deep Learning- Common Applications and Benefits
Deep learning Market is used synonymously with that of machine learning, yet they are not the same. The former is a process where a machine learns to perform something with artificial neural networks that are composed of different levels that are arranged in a hierarchy. Machine learning, on the other hand, is a form of artificial intelligence where computers learn to do something sans being programmed in doing it.
Components of Deep Learning Apparatus
Deep learning apparatus comprises of the following,
- Multiple layers of artificial neurons that simulate the human brain
- Neuron connections getting weaker or stronger resting on input data
- Observed data gets generated via the interaction of various layers
- Different forms of training resting on the need
- Data that could be unlabeled or labeled
- The machine gets smarter with every set of data
- In the final stage, the machines becoming cognitive
Common Applications of Deep Learning
Deep learning Market is used in various end use industries, from medical devices to automated driving, and more.
- Automated Driving- Automotive researchers use deep learning to detect objects automatically, such as stop traffic lights and signs. Besides, it is also used for detecting pedestrians to decrease accidents.
- Medical Research and Healthcare- Cancer researchers are utilizing deep learning to detect cancer cells automatically. Teams at UCLA have developed an advanced microscope that yields a high-dimensional data set for training a deep learning app to precisely identify cancer cells. Besides, currently it focuses on disease tracking, medical imaging, drug discovery, protein structure analysis, and virus infectivity and severity to combat coronavirus.
- Aerospace and Defense- Besides, deep learning is utilized to identify objects from satellites that locate the areas of interest and identify unsafe or safe zones for troops.
- Electronics- Deep learning again is used in speech translation and automated hearing. For instance, home assistance devices respond to one’s voice and know their preferences are powered through deep learning applications.
- Industrial Automation- Last but not least, deep learning helps to improve the safety of workers around heavy machinery via detecting automatically when objects or people are within the machines’ unsafe distance.
Benefits Galore
Deep learning market is in great demand owing to the multiple benefits that it offers such as,
- Maximum Use of Unstructured Data- A huge part of data of an organization is generally unstructured as they exist in various formats such as texts, pictures, and others. For most of the algorithms of machine learning it is quite challenging in analyzing unstructured data. It is here where deep learning comes into the picture. One can use various formats of data to train the algorithms of deep learning and still obtain insights that are pertinent to the training purpose. For instance, deep learning algorithms can be used to uncover existing relations between social media chatter, industry analysis, and more for predicting a given organization’s upcoming stock prices.
- Eliminate Feature Engineering- Feature engineering in machine learning is a key job as this improves accuracy and at times the process may need domain knowledge regarding a specific problem. A key advantage of deep learning is its capability of executing feature engineering via itself. An algorithm in this approach scans the data for identifying features that correlate and then combine the same for promoting faster learning sans being told to do it explicitly. It helps data scientists in saving a huge amount of work.
- Deliver Top-Notch Results- People often make careless mistakes. But this in case of neural networks is not the case. Once trained properly, a deep learning model can perform countless routines, repetitive jobs in a brief time period compared to what humans would take. Besides, the work quality will never degrade.
- Cut Unnecessary Expenditure- Recalls are expensive and in case of some industries, it can cost millions. Through deep learning the subjective defects that are difficult to train such as minor product labeling errors can be detected. A deep learning model will also help in identifying defects that otherwise would be hard to detect. When consistent images turn challenging due to various reasons, deep learning will help to account for such variations and learn valuable features for making the inspections robust.
- Eliminate Data Labeling- The fact is data labeling will be a time-consuming and expensive job. The need for a well-labeled data will become obsolete through deep learning because the algorithms excel to learn without any guideline. Other forms of machine learning are nearly as thriving as deep learning market.
Owing to its alluring features and benefits, deep learning market has wide applications and is here to stay.
Source: https://www.marketresearchfuture.com/reports/deep-learning-market-6058